1,4,5-Trigermabicyclo[2.1.0]pent-2-en-5-ylium: The Isolable Bishomocyclopropenylium Ion Containing a Heavier Group 14 Element

Yutaka Ishida, Akira Sekiguchi,* and Yoshio Kabe
Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
Received May 29, 2003; E-mail: sekiguch@staff.chem.tsukuba.ac.jp

The homoaromaticity concept (pseudoaromaticity) was developed in 1959 by Winstein, ${ }^{1}$ and it is well established in carbocation chemistry. ${ }^{2}$ However, homoaromatic compounds containing the heavier Group 14 elements constitute a relatively new field. Very recently, mono- and trishomocyclopropenylium ions consisting of heavier Group 14 elements have been synthesized and characterized in our group. ${ }^{3}$ Müller et al. reported the formation of bishomosilacyclopropenylium as a transient species, as deduced from trapping reactions. ${ }^{4}$ On the other hand, the anionic bishomoaromatic boron system was synthesized and characterized by Berndt et al. ${ }^{5}$ However, stable bishomoaromatic cations containing the heavier Group 14 elements were still missing, and their existence remained an open question. Herein, we report the preparation of a new bicyclic compound starting from bromocyclotrigermene and its dehalogenation to form the first isolable bishomocyclopropenylium compound, (2,3,5-deloc)-2-phenyl-1,4,5-tris(tri-tert-butylsilyl)-1,4,5-trigermabicyclo[2.1.0]pent-2-en-5-ylium TPFPB ${ }^{-}\left(\mathbf{2}^{+} \cdot\right.$ TPFPB $^{-}$; TPFPB $^{-}=$tetrakis(pentafluorophenyl)borate).

The stable bishomocyclopropenylium compound $\mathbf{2}^{+} \cdot \mathrm{TPFPB}^{-}$was obtained by dehalogenation of 5-bromo-2-phenyl-1,4,5-tris(tri-tert-butylsilyl)-1,4,5-trigermabicyclo[2.1.0]pent-2-ene (1). ${ }^{6}$ Thus, the reaction of $\mathbf{1}$ with an equimolar amount of $\left[\mathrm{Et}_{3} \mathrm{Si}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]^{+} \cdot \mathrm{TPFPB}^{-7}$ in benzene at room temperature immediately produced $\mathbf{2}^{+} \cdot \mathrm{TPFPB}^{-}$ as air- and moisture-sensitive pale yellow crystals in 61% yield (Scheme 1). ${ }^{8}$ Compound $\mathbf{2}^{+}$is very interesting, since it represents a bishomoaromatic cation stabilized by through-space intramolecular coordination to a $\mathrm{C}=\mathrm{C}$ double bond.

We determined the actual structure of $\mathbf{2}^{+} \cdot$ TPFPB $^{-}$by X-ray crystallographic analysis (Figure 1). ${ }^{9}$ The shortest $\mathrm{Ge} \cdots \mathrm{F}$ distance is ca. $5.4 \AA$ longer than the sum of the van der Waals radii of Ge and $\mathrm{F}(3.6 \AA)$, that is, $\mathbf{2}^{+}$is a free cation in the solid state. The $\mathbf{2}^{+}$ ions have a highly strained "housene"-type skeleton, which consists of a Ge_{3} equilateral triangle and a $\mathrm{Ge}_{2} \mathrm{C}_{2}$ four-membered ring. The $\mathrm{Ge} 3-\mathrm{C} 1(2.415(7) \AA$) and $\mathrm{Ge} 3-\mathrm{C} 2(2.254(7) \AA)$ interatomic distances are very short due to the through-space interaction with the $\mathrm{C}=\mathrm{C}$ double bond, ${ }^{10}$ whereas the $\mathrm{C} 1=\mathrm{C} 2$ bond (1.411(9) \AA) is considerably long. ${ }^{10}$ These changes in the bond length indicate the effective homoconjugation between the empty 4 p -orbital on the Ge atom and the π-orbital of the $\mathrm{C}=\mathrm{C}$ double bond, resulting in strong bending of the C 1 C 2 unit toward the Ge 3 atom, as determined by the dihedral angle of 67° between the $\mathrm{Ge} 1-\mathrm{Ge} 2-\mathrm{Ge} 3$ plane and the mean plane of $\mathrm{Ge} 1-\mathrm{Ge} 2-\mathrm{C} 1-\mathrm{C} 2$. This strong three-center twoelectron bonding also leads to a slight pyramidalization of the homoconjugative atoms. The results of a calculation on the trimethylsilyl-substituted model compound $\mathbf{3}^{+}$at the B3LYP/DZd level ${ }^{11}$ well reproduced the experimental bishomocyclopropenylium structure, with bond lengths and angles in good agreement with the X-ray structure. The pyramidalization of the homoconjugative atoms was also found in $\mathbf{3}^{+}$, which is due to the effective $4 \mathrm{p}(\mathrm{Ge})$ $\pi(\mathrm{C}=\mathrm{C})$ orbitals homoconjugation.

Scheme 1

1

(1:1 mixture of cis,trans and cis,cis)

Scheme 2

The characteristic deshielded ${ }^{29} \mathrm{Si}$ NMR signals of $\mathbf{2}^{+}$were observed at 56.1 and 67.2 ppm in a ratio of $1: 2$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (the two signals of the silicon atoms attached to bridgehead germanium atoms occasionally overlap). One of the most important features of $\mathbf{2}^{+}$is the considerably shielded ${ }^{13} \mathrm{C}$ NMR chemical shifts of the endocyclic atoms, phenyl (C 1) or hydrogen (C 2) substituted carbon atoms and ${ }^{1} \mathrm{H}$ NMR chemical shift for the olefinic proton attached to atom C2, relative to those of the neutral precursor $\mathbf{1}$ (compared with cis,trans-1). Despite the partial delocalization of the positive charge over $\mathrm{Ge} 3, \mathrm{C} 1$, and C 2 , dramatic upfield shifts ($\Delta \delta_{{ }_{13} \mathrm{C}}(\mathrm{C} 1)$ $\left.=-29.8, \Delta \delta^{13} \mathrm{C}(\mathrm{C} 2)=-54.5, \Delta \delta^{{ }_{\mathrm{H}}}(\mathrm{H} 2)=-1.17\right)$ are observed due to the partial rehybridization of C 1 and C 2 atoms from sp^{2} - to sp^{3}-type that are similar to the carbon congeners. ${ }^{12}$ The relatively large ${ }^{1}{ }^{1{ }^{13}} \mathrm{C}-{ }^{-1} \mathrm{H}$ coupling constant of 165.9 Hz for $\mathbf{2}^{+}$is also typical for a bishomoaromatic cation. ${ }^{12}$

In accordance with the homoconjugative structure, NBO analysis ${ }^{13}$ of 3^{+}clearly shows the electron deficiency of the $\pi(\mathrm{C}=\mathrm{C})$ orbital (1.28 e) and an appreciable occupation of the empty 4 p (Ge3) orbital (0.42 e). The bond orders (WBI) of Ge3-C1, Ge3-

Figure 1. ORTEP drawing of $\mathbf{2}^{+} \cdot \mathrm{TPFPB}^{-}$. There are two crystallographycally independent molecules in the unit cell, and both structures are identical except for the orientation for the ${ }^{t} \mathrm{Bu}_{3} \mathrm{Si}$ group on the Ge 1 atom; one of these molecular structures is shown. Hydrogen atoms are omitted for clarity. Selected bond lengths (\AA): $\mathrm{Ge} 1-\mathrm{Ge} 2=2.4765(10)$, $\mathrm{Ge} 1-$ $\mathrm{Ge} 3=2.4671(10), \mathrm{Ge} 2-\mathrm{Ge} 3=2.4740(10), \mathrm{Ge} 3-\mathrm{C} 1=2.415(7), \mathrm{Ge} 3-$ $\mathrm{C} 2=2.254(7), \mathrm{C} 1-\mathrm{C} 2=1.411(9)$. Selected bond angles (deg): Ge1$\mathrm{Ge} 2-\mathrm{Ge} 3=59.78(3), \mathrm{Ge} 2-\mathrm{Ge} 3-\mathrm{Ge} 1=60.16(3), \mathrm{Ge} 3-\mathrm{Ge} 1-\mathrm{Ge} 2=$ 60.06(3). Selected torsion angles (deg): $\mathrm{C} 1-\mathrm{Ge} 1-\mathrm{Ge} 2-\mathrm{Ge} 3=-69.3(2)$, $\mathrm{Ge} 3-\mathrm{Ge} 1-\mathrm{Ge} 2-\mathrm{C} 2=64.5(2), \quad \mathrm{C} 39-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Ge} 2=176.2(6)$, $\mathrm{Ge} 2-\mathrm{Ge} 1-\mathrm{Ge} 3-\mathrm{Si} 3=-171.65(10)$.

C 2 , and $\mathrm{C} 1-\mathrm{C} 2$ in 3^{+}are $0.37,0.46$, and 1.39 , respectively, which agrees with the formation of three-center two-electron bonding mode. Further support for the bishomoaromaticity was provided by the calculation of NICS ${ }^{14}$ at $1 \AA$ above the center of the triangle
composed of the homoconjugative atoms (Ge3, C1,C2) (NICS(1)). This NICS value is negative $(\operatorname{NICS}(1)=-11.0)$ indicating the presence of diatropic ring current in $\mathbf{3}^{+} .{ }^{15}$

The reaction of $\mathbf{2}^{+} \cdot \mathrm{TPFPB}^{-}$with tetrabutylammonium bromide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ gave the brominated compound $\mathbf{1}$ as the single cis,cis-isomer (Scheme 2). Because of the steric shielding by the bulky ${ }^{t} \mathrm{Bu}_{3} \mathrm{Si}$ group, Br^{-}attacked the Ge^{+}center from the side of the homoconjugative ring giving selectively only one isomer.

Supporting Information Available: The experimental procedures of $\mathbf{1}$ and $\mathbf{2}^{+} \cdot$ TPFPB $^{-}$, table of crystallographic data including atomic positional and thermal parameters for $\mathbf{2}^{+} \cdot \mathrm{TPFPB}^{-}$, calculated energy and geometry for $\mathbf{3}^{+}$. X-ray crystallographic files in CIF format. This material is available free of change via the Internet at http://pubs.acs.org.

References

(1) Winstein, S.; Sonnenberg, J.; de Vries, L. J. Am. Chem. Soc. 1959, 81, 6523.
(2) For reviews, see: (a) Winstein, S. Q. Rev. Chem. Soc. 1969, $23,1411$. (b) Paquette, L. A. Angew. Chem., Int. Ed. Engl. 1978, 17, 106. (c) Williams, R. V. Chem. Rev. 2001, 101, 1185.
(3) (a) Sekiguchi, A.; Matsuno, T.; Ichinohe, M. J. Am. Chem. Soc. 2000, 122, 11250. (b) Sekiguchi, A.; Ishida, Y.; Kabe, Y.; Ichinohe, M. J. Am. Chem. Soc. 2002, 124, 8776.
(4) Schuppan, J.; Herrschaft, B.; Müller, T. Organometallics 2001, 20, 4584.
(5) Scheschkewitz, D.; Hofmann, M.; Ghaffari, A.; Amseis, P.; Präsang, C.; Mesbah, W.; Geiseler, G.; Massa, W.; Berndt, A. J. Organomet. Chem. 2002, 646, 262.
(6) Compound $\mathbf{1}$ as a mixture of two stereoisomers (1:1) was prepared by the reaction of 3-bromo-1,2,3-tris(tri-tert-butylsilyl)cyclotrigermene with phenylacetylene. For halogen-substituted cyclotrigermenes, see: Sekiguchi, A.; Ishida, Y.; Fukaya, N.; Ichinohe, M.; Takagi, N.; Nagase, S. J. Am. Chem. Soc. 2002, 124, 1158.
(7) Lambert, J. B.; Zhang, S.; Stern, C. L.; Huffman, J. C. Science 1993, 260, 1917.
(8) For the experimental procedure and spectral data of $\mathbf{2}^{+} \cdot \mathrm{TPFPB}^{-}$, see the Supporting Information.
(9) Crystal data for $\mathbf{2}^{+} \cdot$ TPFPB $^{-}$at $120 \mathrm{~K}: \mathrm{MF}=\mathrm{C}_{68} \mathrm{H}_{87} \mathrm{BF}_{20} \mathrm{Ge}_{3} \mathrm{Si}_{3}$, MW 1597.23, triclinic, $P \overline{1}, a=14.2100(9), b=14.4170(11), c=36.2190-$ (21) A, $a=88.679(4), \beta=83.103(4), \gamma=90.055(4)^{\circ}, V=7364.3(8)$ $\AA^{3}, Z=4, D_{\text {calcd }}=1.441 \mathrm{~g} \mathrm{~cm}^{-3}$. The final R factor was 0.0802 with $I_{\text {o }}$ $>2 \sigma\left(I_{\mathrm{o}}\right)\left(R_{\mathrm{w}}=0.2235\right.$ for all data, 31382 reflections $), \mathrm{GOF}=1.034$.
(10) The Ge \cdots C interatomic distance in 5 -mesityl-2-phenyl-1,4,5-tris(tri-tert-butylsilyl)-1,4,5-trigermabicyclo[2.1.0]pent-2-ene, which has a $\mathrm{C}=\mathrm{C}$ double bond length of $1.357(4) \AA$, is ca. $3.2 \AA$, see: Fukaya, N.; Ichinohe, M.; Sekiguchi, A. Angew. Chem., Int. Ed. 2000, 39, 3881.
(11) The calculations were carried out using the Gaussian 98 program with effective core potentials and double- ζ (DZ) basis sets on Ge and Si (Wadt, W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284) augmented by d-type polarization functions (d exponents $0.255(\mathrm{Ge}), 0.310(\mathrm{Si})$), and $6-31 \mathrm{G}-$ (d) basis set for C and H .
(12) (a) Olah, G. A.; Liang, G. J. Am. Chem. Soc. 1975, 97, 6803. (b) Prakash, G. K. S.; Farnia, M.; Keyanian, S.; Olah, G. A.; Kuhn, H. J.; Schaffner, K. J. Am. Chem. Soc. 1987, 109, 911.
(13) The natural bond orbital analysis was performed at the NBO-B3LYP/631G(d)//B3LYP/DZd level of theory. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.
(14) The nucleus-independent chemical shift (NICS) was computed at GIAO-B3LYP/6-31G(d)//B3LYP/DZd level of theory. (a) Schleyer, P. v. R.; Maecker, C.; Dransfeld, A.; Jiao, H.; Nicolaas, J. R. v. E. H. J. Am. Chem. Soc. 1996, 118 , 6317. (b) Schleyer, P. v. R.; Jiao, H.; Nicolaas, J. R. v. E. H.; Malkin, V. G.; Malkina, O. L. J. Am. Chem. Soc. 1997, 119, 12669.
(15) (a) Lösslein, W.; Pritzkow, H.; Schleyer, P. v. R.; Schmitz, L. R., Siebelt, W. Angew. Chem., Int. Ed. 2000, 39, 1276. (b) Lösslein, W.; Pritzkow, H.; Schleyer, P. v. R.; Schmitz, L. R., Siebelt, W. Eur. J. Inorg. Chem. 2001, 1949.
JA030327A

